Dec14 - 07

PowerCyber Testbed

Our Team

Derek Augustyn - Project Dictator Adam Daniel - Webmaster Shuky Meyer - CprE Team Lead Justin Noronha - EE Team Lead KangHee Lee - Key Idea Holder Brian Forsberg - Key Idea Holder

Dr. Manimaran Govindarasu - Advisor/Client

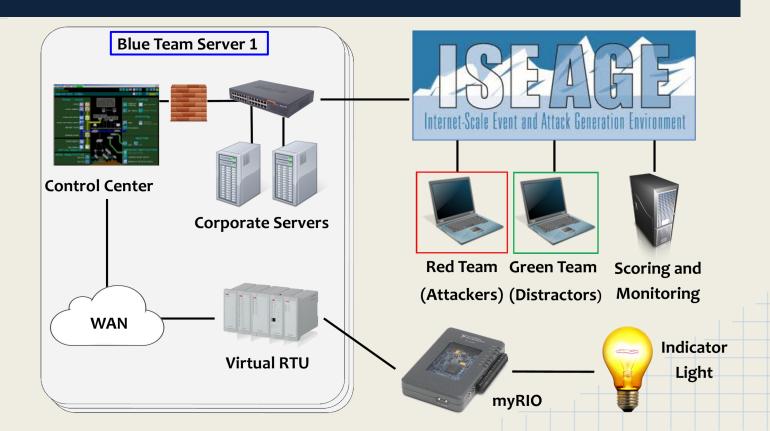
Problem Statement

- Today's electrical smart grid is a highly automated and complex network
 Comprised of various sensors and communication abilities to monitor, protect, and control the grid
- Cyber security is becoming a major concern due to the rapid development of this network and the IEDs within
- Realistic testing for cyber-physical scenarios cannot be done in the field
- To remedy this, we combine the PowerCyber testbed and the ISEAGE platform to create a first of its kind Cyber Physical System Cyber Defense Competition (CPS-CDC)

Why CPS-CDC?

- Gather interest and concern for utility systems among students
- Enhance knowledge of students studying cyber security to protect smart grid
- Develop mitigation strategies for SCADA systems
- Crowdsource possible attack vectors gained by participating students

Source: https://cdc.iseage.org/

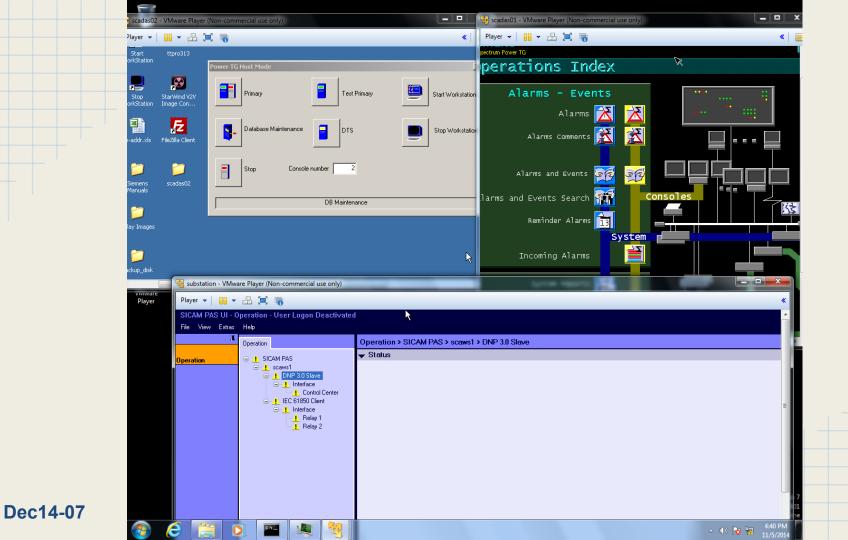

Functional Requirements

- Gain and learn to use National Instruments myDAQ, myRIO, and myGrid
- Utilize myRIO to control myGrid board
- Develop attack scenarios for the competition
- Setup virtualization environments for CPS-CDC simulations
- Integrate National Instruments equipment into PowerCyber Lab, ICERink, and CPS-CDC

Non-Functional Requirements

- Document all work to improve project handover time
- CPS-CDC should be scalable and portable
- Develop learning materials to quickly immerse students in SCADA systems
- Reverse-Engineer old myGrid backend to function normally

Competition Layout


Equipment

myRIO

• myDAQ and myGrid

Design-Virtualization

- For the CPS-CDC to be portable and scalable, we need to virtualize our current SCADA testbed.
 - CDC teams need to be able to control a variable number of VMs, depending on the scenario
 - These VMs must be able to bridge to the physical network
 - VMs also must be able to communicate with physical relays
- We need to have an environment similar to CDC
 - We will utilize ISEAGE and add a Cyber Physical component to it
 - Internet-Scale Event and Attack Generation Environment
 - Needs to connect to the PowerCyber network

Iterations

VMware ESXi

- hostd issues in our configuration of ESXi
 - Used a pre-built ISERink instead

Virtualized SCADA Environment

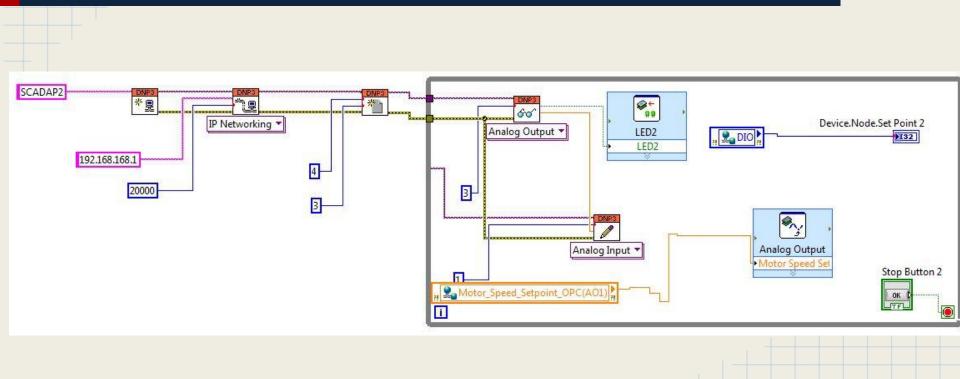
- Control Center originally installed by Siemens employee and we cannot reinstall by ourselves.
 - Virtualized the instance installed by Siemens in the lab
- Multiple subnets in lab and preconfigured with ISERink affected communication between RED team and virtualized environment
 - Hard-coded IP configuration
 - Reconfigured ISERink subnets to allow communication

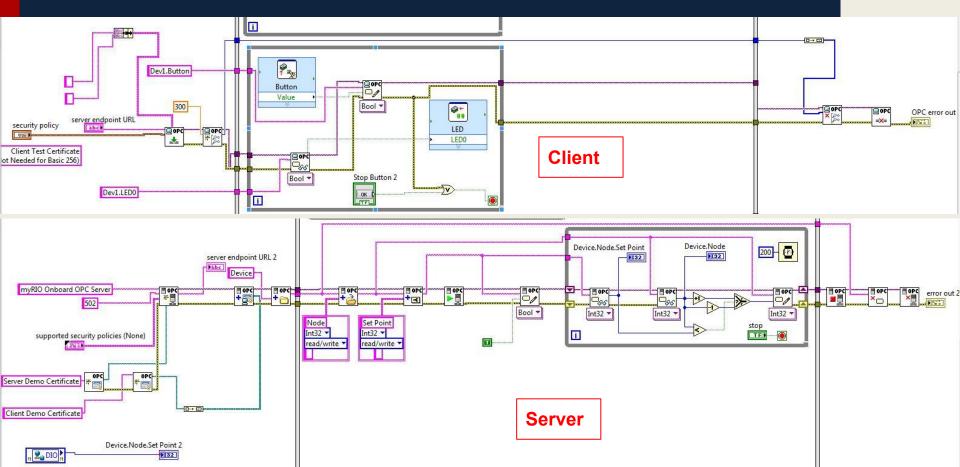
Design-Hardware

Two Major Design Requirements

- Able to communicate between the myRIO and the PowerCyber Lab using OPC communication
- Easily deployable, minimal setup time with no prior experience necessary
- For the majority of the design process we focused on integrating the myGrid board with the myRIO
- Given an older version of the myGrid GUI software, we reverse engineered a solution to get the current myGrid board functioning normally
 - Helped us learn about LabView and troubleshoot through many challenging roadblocks
- Designing the OPC communications link was much more straightforward
 - OPC is versatile, so it took many iterations to find the best setup for our spec.

Iterations-myDAQ


Iterations-myRIO


Iterations-Shared Variables

	" DIO	Device.Node.Set Point 2
21	Motor_Speed_Setpoint_OP	Analog Output C(AO1)
		Stop Button 2

Iterations-DNP3

Iterations-OPC UA

Scope & Changes

1st Semester	2nd Semester	
Create Cyber-Physical System Cyber Defense Competition (CPS-CDC)	Virtualized Environment Virtualized components of the PowerCyber Lab ISERink	
Add communication between the devices, model, and control center	Integrate National Instruments (NI) equipments myRIO-myGrid into PowerCyber Lab using local network	
Implement a protection scheme for the existing 39 bus model	Furthermore, integrate NI equipments to ISERink and CPS-CDC as well	
Integrate physical relays into existing 39 bus model	Interface between myRIO and myGrid so that myRIO receives the correct data from myGrid	

PowerCyber

Questions?

None?

Okay good